Certified Ekasi Mineral Leacher Study Guide

Developed for Ekasi Courses

Module 1: Mining Fundamentals

Key Learning Objectives

- Understand basic mining terminology and concepts
- Identify different types of mining operations
- Recognize the mineral extraction value chain
- Comprehend ore grade and tonnage calculations

Core Concepts

Types of Mining:

- Surface Mining: Open-pit, strip mining, mountaintop removal
- Underground Mining: Room and pillar, longwall, cut and fill
- Solution Mining: In-situ leaching, brine extraction

Key Terms:

- Ore: Naturally occurring mineral containing valuable elements in economic quantities
- Gangue: Worthless rock or mineral matter associated with ore
- **Grade:** Concentration of valuable mineral in ore (usually expressed as percentage)
- Recovery: Percentage of valuable mineral actually extracted from ore
- Tailings: Waste material left after ore processing

Mining Process Flow:

- 1. Exploration and Resource Evaluation
- 2. Mine Development and Planning
- 3. Extraction Operations
- 4. Ore Processing and Beneficiation
- 5. Product Marketing and Distribution
- 6. Mine Closure and Rehabilitation

Economic Considerations

- Capital expenditure (CAPEX) vs Operating expenditure (OPEX)
- Net Present Value (NPV) calculations
- Internal Rate of Return (IRR)
- Payback period analysis

Practice Questions - Module 1

- 1. Define the difference between ore and gangue minerals. Provide two examples of each.
- 2. **Calculate the total metal content:** If you have 10,000 tonnes of copper ore with a grade of 2.5% Cu, how much copper metal is contained in this ore?
- 3. **Multiple Choice:** Which mining method is most suitable for shallow, large, low-grade deposits? a) Underground mining b) Open-pit mining c) Solution mining d) Placer mining
- 4. **Scenario Analysis:** A mine has the following economics: Initial investment \$50M, annual cash flow \$8M for 10 years. Calculate the simple payback period.
- 5. **Short Essay:** Explain why ore grade is crucial in determining mining feasibility. Include economic and technical factors.

Module 2: Leaching vs. Leeching – Definitions & Ethics

Key Learning Objectives

- Distinguish between leaching and leeching terminology
- Understand ethical implications of mineral extraction
- Recognize community impact considerations
- Apply ethical frameworks to mining decisions

Core Concepts

Leaching (Technical Process):

- **Definition:** Extraction of soluble minerals from ore using chemical solutions
- **Purpose:** Separate valuable metals from gangue minerals
- Applications: Gold cyanidation, copper acid leaching, uranium roll-front mining

Leeching (Parasitic Behavior):

• **Definition:** Extracting resources without providing fair compensation

- **Context:** Often used critically to describe exploitative mining practices
- **Examples:** Resource extraction without community benefit, environmental damage without remediation

Ethical Frameworks in Mining

Stakeholder Theory:

- Primary stakeholders: Shareholders, employees, customers
- Secondary stakeholders: Communities, environment, future generations
- Balancing competing interests and rights

Social License to Operate:

- Community acceptance and approval
- Ongoing relationship building
- Transparent communication
- Benefit sharing mechanisms

Corporate Social Responsibility (CSR):

- Environmental stewardship
- Community development programs
- Fair labor practices
- Transparent reporting

Common Ethical Dilemmas

- Profit maximization vs environmental protection
- Short-term gains vs long-term sustainability
- Local employment vs automated efficiency
- Resource sovereignty vs foreign investment

Practice Questions - Module 2

- 1. **Definition Comparison:** Write a 200-word explanation distinguishing between "leaching" as a metallurgical process and "leeching" as an ethical concern.
- 2. **Case Study Analysis:** A mining company discovers a rich gold deposit under a community's agricultural land. List five ethical considerations the company must address.

- True/False: Social license to operate is a legal requirement in all mining jurisdictions. Explain your answer.
- 4. **Stakeholder Mapping:** Create a stakeholder map for a proposed copper mine, categorizing each group as primary or secondary stakeholders.
- 5. **Ethical Dilemma:** A profitable mine must choose between installing expensive pollution control equipment or closing operations (affecting 500 jobs). Analyze this dilemma using stakeholder theory.

Module 3: Modern Leaching Technologies

Key Learning Objectives

- Identify current leaching technologies and applications
- Understand heap leaching, tank leaching, and in-situ leaching
- Compare advantages and disadvantages of different methods
- Recognize technological innovations in leaching

Core Technologies

Heap Leaching:

- Process: Ore stacked in heaps, solution percolated through
- Applications: Gold, copper, silver, uranium
- Advantages: Low capital cost, suitable for low-grade ores
- Disadvantages: Long leaching cycles, weather dependency

Tank Leaching (Agitated Leaching):

- Process: Ore slurry agitated in tanks with lixiviant
- Applications: High-grade ores, rapid extraction required
- Advantages: Faster kinetics, better control, higher recovery
- Disadvantages: Higher capital and operating costs

In-Situ Leaching (ISL):

- Process: Lixiviant injected directly into ore deposit
- Applications: Uranium, copper, rare earth elements
- Advantages: Minimal surface disturbance, lower costs
- **Disadvantages:** Groundwater contamination risk, geological constraints

Vat Leaching:

- Process: Ore placed in concrete vats, solution circulated
- Applications: Medium-grade ores, intermediate between heap and tank
- Advantages: Better drainage control than heaps
- Disadvantages: Higher capital cost than heap leaching

Emerging Technologies

Bioleaching:

- Microorganisms assist in metal extraction
- Applications: Copper, gold, nickel
- Environmental benefits: Lower chemical usage

Pressure Leaching:

- High temperature and pressure conditions
- Applications: Refractory ores, complex sulfides
- Advantages: Higher recovery rates

Electrochemical Leaching:

- Electrical current enhances leaching
- Applications: Complex ores, selective extraction

Selection Criteria

- Ore characteristics (grade, mineralogy, particle size)
- Economic factors (capital cost, operating cost, metal prices)
- Environmental considerations
- Technical feasibility
- Project timeline requirements

Practice Questions - Module 3

- 1. **Technology Comparison:** Create a comparison table showing the advantages and disadvantages of heap leaching vs tank leaching for gold extraction.
- 2. **Process Selection:** Given the following ore characteristics, recommend the most suitable leaching technology and justify your choice:

- Gold grade: 0.8 g/t
- Ore tonnage: 50 million tonnes
- Location: Remote desert area
- Budget constraints: Limited capital
- 3. **Technical Calculation:** A heap leaching operation processes 1000 tonnes/day of ore with 1.2 g/t gold. If the recovery is 65% and the leaching cycle is 90 days, calculate the total gold production per cycle.
- 4. **Innovation Analysis:** Research and describe one emerging leaching technology not covered in the traditional methods. Include its potential applications and benefits.
- 5. **Environmental Impact:** Compare the environmental footprints of in-situ leaching vs conventional open-pit mining with heap leaching for uranium extraction.

Module 4: Practical Processes of Leaching

Key Learning Objectives

- Understand step-by-step leaching operations
- Learn about solution preparation and management
- Master pregnant leach solution (PLS) handling
- Understand downstream processing requirements

Process Overview

Pre-Leaching Operations:

1. Ore Preparation:

- Crushing and sizing
- Agglomeration (for heap leaching)
- Stacking procedures
- Pad preparation and liner installation

2. Solution Preparation:

- Lixiviant concentration optimization
- pH adjustment
- Additive incorporation
- Quality control testing

Leaching Operations:

1. Solution Application:

- Distribution systems (drippers, sprinklers)
- Flow rate control
- Coverage uniformity
- Monitoring systems

2. Solution Collection:

- Drainage systems
- Pond design and management
- Pregnant leach solution (PLS) handling
- Barren solution recycling

Process Control Parameters

Chemical Parameters:

- pH levels (typically 10.5-11.5 for cyanide leaching)
- Dissolved oxygen concentration
- Lixiviant concentration
- Temperature control

Physical Parameters:

- Solution flow rates
- Heap permeability
- Particle size distribution
- Moisture content

Operational Parameters:

- Irrigation cycles
- Rest periods
- Solution strength adjustment
- Heap lift sequencing

Downstream Processing

Metal Recovery Methods:

- Carbon-in-Pulp (CIP): Activated carbon adsorbs dissolved metals
- Solvent Extraction-Electrowinning (SX-EW): Copper recovery
- **Ion Exchange:** Selective metal separation
- Precipitation: Chemical precipitation of metals

Solution Treatment:

- Neutralization
- Heavy metal removal
- Water recycling
- Waste solution disposal

Operational Challenges

- Solution channeling and poor distribution
- Heap settling and compaction
- Clay formation and permeability loss
- Seasonal weather effects
- Equipment maintenance

Practice Questions - Module 4

- 1. **Process Flowsheet:** Draw a simplified flowsheet for a gold heap leaching operation, including all major process steps from ore preparation to gold recovery.
- 2. **Parameter Optimization:** A heap leaching operation is experiencing low gold recovery (45% vs target of 70%). List six potential causes and corresponding corrective actions.
- 3. Mass Balance: Calculate the mass balance for a heap leaching circuit with the following data:
 - Feed ore: 10,000 t/day at 1.5 g/t Au
 - Recovery: 68%
 - PLS grade: 2.5 mg/L Au
 - Solution flow: 50 m³/h
- 4. **Troubleshooting:** A heap shows signs of solution channeling. Describe the symptoms you would observe and propose three remedial measures.
- 5. **Economic Analysis:** Compare the operating costs per ounce of gold recovered between heap leaching and tank leaching operations. Consider reagent consumption, power costs, and labor

Module 5: The Chemistry of Mineral Leaching

Key Learning Objectives

- Understand fundamental leaching chemistry
- Learn about different lixiviants and their applications
- Master thermodynamics and kinetics of leaching reactions
- Understand solution chemistry and speciation

Fundamental Chemistry

Leaching Reactions: Leaching involves dissolving target minerals while leaving gangue minerals unchanged. The general reaction can be written as:

Metal Sulfide + Lixiviant → Metal Complex + Byproducts

Common Lixiviants:

1. Cyanide (CN⁻):

- Primary use: Gold and silver leaching
- Reaction: $4Au + 8CN^{-} + O_2 + 2H_2O \rightarrow 4Au(CN)_2^{-} + 4OH^{-}$
- pH requirement: 10.5-11.5 (alkaline conditions)

2. Sulfuric Acid (H₂SO₄):

- Primary use: Copper and uranium leaching
- Reaction: CuS + $H_2SO_4 + \frac{1}{2}O_2 \rightarrow CuSO_4 + S + H_2O$
- pH requirement: 1.5-2.5 (acidic conditions)

3. Ammonia (NH₃):

- Primary use: Copper and nickel
- Reaction: $Cu^{2+} + 4NH_3 \rightarrow Cu(NH_3)_4^{2+}$
- pH requirement: 8-10 (ammoniacal conditions)

4. Chloride:

- Primary use: Complex sulfides, refractory ores
- Advantages: Faster kinetics than cyanide
- Challenges: Corrosion, environmental concerns

Thermodynamics and Kinetics

Thermodynamic Considerations:

- Gibbs free energy changes (ΔG)
- Equilibrium constants
- Eh-pH (Pourbaix) diagrams
- Solubility relationships

Kinetic Factors:

- Reaction rate laws
- Arrhenius equation for temperature effects
- Mass transfer limitations
- Surface area effects

Rate-Limiting Factors:

- 1. Chemical reaction control: Slow surface reactions
- 2. **Diffusion control:** Mass transfer limitations
- 3. **Mixed control:** Combination of both

Solution Chemistry

Speciation and Complexation:

- Metal-ligand complex formation
- Stability constants
- pH effects on speciation
- Competing reactions

Interfering Reactions:

- Preg-robbing: Activated carbon in ores
- Cyanicide reactions: CN⁻ consumption by base metals
- Passivation: Protective layer formation
- Side reactions: Unwanted chemical reactions

Environmental Chemistry

- Acid mine drainage formation
- Metal mobility and bioavailability
- Natural attenuation processes
- Geochemical modeling

Practice Questions - Module 5

- 1. **Chemical Equations:** Write balanced chemical equations for the following leaching reactions: a) Gold leaching with cyanide in alkaline conditions b) Copper leaching from chalcocite (Cu₂S) with sulfuric acid c) Silver leaching with thiosulfate
- 2. **Thermodynamic Analysis:** Using Pourbaix diagrams, explain why gold leaching with cyanide requires alkaline conditions (pH > 10.5).
- 3. **Kinetic Calculation:** A leaching reaction follows first-order kinetics with a rate constant of 0.05 min⁻¹. Calculate the time required to achieve 90% extraction.
- 4. **Solution Chemistry:** Explain why "preg-robbing" occurs in some gold ores and describe three methods to overcome this problem.
- 5. **Process Chemistry:** A copper heap leaching operation shows declining copper recovery over time. The pH of the PLS is increasing from 2.0 to 3.5. Explain the likely chemical causes and propose solutions.

Module 6: Environmental Management in Mining

Key Learning Objectives

- Understand environmental impacts of mining operations
- Learn environmental management systems and frameworks
- Master waste management and pollution control
- Understand environmental monitoring and reporting

Environmental Impacts

Water Resources:

- Acid mine drainage (AMD)
- Heavy metal contamination
- Groundwater depletion
- Surface water diversion
- Sediment loading

Air Quality:

- Particulate matter (dust)
- Gaseous emissions (SO₂, NO_x)
- Greenhouse gas emissions
- Fugitive emissions

Land and Ecosystems:

- Habitat destruction and fragmentation
- Soil contamination
- Biodiversity loss
- Landscape alteration
- Noise pollution

Environmental Management Systems

ISO 14001 Framework:

- Environmental policy development
- Planning and objective setting
- Implementation and operation
- Monitoring and evaluation
- Management review and improvement

Key Components:

1. Environmental Impact Assessment (EIA):

- Baseline studies
- Impact prediction
- Mitigation measures
- Monitoring programs

2. Environmental Management Plan (EMP):

- Operational procedures
- Monitoring protocols
- Reporting requirements

• Emergency response plans

Pollution Control Technologies

Water Treatment:

• Active Treatment: Chemical precipitation, neutralization

Passive Treatment: Constructed wetlands, limestone drains

Advanced Treatment: Reverse osmosis, ion exchange

Zero Liquid Discharge (ZLD): Complete water recycling

Air Emission Control:

- Dust suppression systems
- Baghouse filters
- Scrubber systems
- Enclosed conveyor systems

Waste Management:

- Tailings storage facility design
- Waste rock characterization
- Hazardous waste handling
- Recycling and reuse programs

Regulatory Compliance

International Standards:

- Equator Principles
- IFC Performance Standards
- ICMM Sustainable Development Principles

National Regulations:

- Environmental permits and licenses
- Discharge limits and standards
- Monitoring and reporting requirements
- Financial assurance for closure

Best Practices

- Implement management hierarchy: Avoid > Minimize > Mitigate > Offset
- Continuous improvement approach
- Stakeholder engagement
- Transparency in reporting
- Integration with operational planning

Practice Questions - Module 6

- 1. **Impact Assessment:** Describe the potential environmental impacts of a proposed copper heap leaching operation. Categorize impacts as direct, indirect, and cumulative.
- 2. **Management System:** Design an environmental monitoring program for a gold mine. Include parameters to monitor, sampling locations, frequency, and reporting protocols.
- 3. **Regulatory Compliance:** A mining operation exceeds its permitted discharge limits for copper (5 mg/L vs permit limit of 2 mg/L). Develop a corrective action plan including immediate and long-term measures.
- 4. **Technology Selection:** Compare active vs passive treatment options for treating acid mine drainage. Include technical, economic, and environmental considerations.
- 5. **Case Study:** Research and analyze a real-world example of environmental remediation at a mine site. Discuss the technologies used, costs involved, and effectiveness of the remediation.

Module 7: GIS in Mineral Exploration & Monitoring

Key Learning Objectives

- Understand GIS fundamentals and applications in mining
- Learn spatial data management and analysis
- Master remote sensing applications
- Understand environmental monitoring using GIS

GIS Fundamentals

Core Components:

- Hardware: Computers, GPS units, data loggers
- **Software:** ArcGIS, QGIS, MapInfo, specialized mining software
- Data: Spatial (vector/raster) and attribute data

- People: GIS analysts, geologists, environmental specialists
- Methods: Spatial analysis procedures and workflows

Spatial Data Types:

- Vector Data: Points (drill holes), lines (faults), polygons (ore bodies)
- Raster Data: Satellite imagery, digital elevation models, geophysical grids
- Attribute Data: Non-spatial information linked to geographic features

Applications in Mineral Exploration

Geological Mapping:

- Rock unit delineation
- Structural interpretation
- Alteration zone mapping
- Geochemical anomaly detection

Geophysical Integration:

- Magnetic and gravity data processing
- Electromagnetic survey interpretation
- Induced polarization anomaly mapping
- Multi-dataset integration

Exploration Targeting:

- Prospectivity mapping
- Fuzzy logic modeling
- Neural network analysis
- Decision tree algorithms

Drill Hole Management:

- 3D visualization of drill data
- Grade interpolation
- Resource estimation
- Cross-section generation

Remote Sensing Applications

Satellite Imagery:

Multispectral: Landsat, Sentinel-2

Hyperspectral: ASTER, HyMap

• Radar: SAR interferometry for ground deformation

Applications:

- Lithological mapping
- Alteration mineral detection
- Vegetation stress monitoring
- Change detection analysis

Environmental Monitoring

Air Quality Monitoring:

- Dust dispersion modeling
- Emission source tracking
- Meteorological data integration

Water Resource Management:

- Watershed delineation
- Groundwater flow modeling
- Surface water quality monitoring
- Contamination plume tracking

Ecosystem Monitoring:

- Habitat mapping and assessment
- Biodiversity monitoring
- Restoration progress tracking
- Landscape connectivity analysis

Data Management and Quality

Database Design:

Relational database structure

- Data standards and protocols
- Quality control procedures
- Metadata documentation

Spatial Analysis Techniques:

- Buffer analysis
- Overlay operations
- Spatial interpolation
- Network analysis
- Terrain analysis

Practice Questions - Module 7

- 1. **System Design:** Design a GIS database structure for managing exploration data including geology, geochemistry, geophysics, and drill hole information.
- 2. **Spatial Analysis:** Describe how you would use GIS to identify optimal locations for heap leach pads considering topography, geology, groundwater, and environmental constraints.
- 3. **Remote Sensing:** Explain how hyperspectral satellite imagery can be used to detect hydrothermal alteration associated with porphyry copper deposits.
- 4. **Environmental Application:** Design a GIS-based monitoring system to track the environmental impacts of a mining operation on local water resources.
- 5. **Technical Problem:** A mine needs to optimize haul road design to minimize environmental impact while maintaining operational efficiency. Describe the GIS analysis workflow you would use.

Module 8: Ethical Considerations in Mineral Extraction

Key Learning Objectives

- Understand ethical frameworks applicable to mining
- Learn about indigenous rights and cultural considerations
- Master conflict minerals and supply chain ethics
- Understand community development and benefit sharing

Ethical Frameworks

Utilitarianism:

Greatest good for greatest number

- Cost-benefit analysis
- Long-term vs short-term outcomes
- Distribution of benefits and costs

Rights-Based Ethics:

- Human rights principles
- Indigenous rights
- Environmental rights
- Future generations' rights

Virtue Ethics:

- Character-based approach
- Corporate virtues: honesty, integrity, responsibility
- Professional ethics for mining engineers
- Cultural sensitivity and respect

Indigenous Rights and Cultural Heritage

International Standards:

- UN Declaration on Rights of Indigenous Peoples
- ILO Convention 169
- Free, Prior, and Informed Consent (FPIC)

Key Considerations:

- Traditional land use rights
- Sacred sites protection
- Cultural heritage preservation
- Traditional ecological knowledge
- Benefit sharing agreements

Best Practices:

- Early and meaningful engagement
- Capacity building programs
- Employment and training opportunities

- Cultural awareness training for staff
- Independent monitoring and grievance mechanisms

Conflict Minerals and Supply Chain Ethics

Conflict Minerals:

- 3TG: Tin, tungsten, tantalum, gold
- Cobalt: Child labor concerns in DRC
- Rare earth elements: Environmental and social issues

Due Diligence Requirements:

- OECD Guidelines for Multinational Enterprises
- UN Global Compact principles
- Dodd-Frank Act Section 1502
- EU Conflict Minerals Regulation

Supply Chain Management:

- Supplier auditing and verification
- Chain of custody documentation
- Risk assessment procedures
- Remediation and disengagement strategies

Community Development

Social Impact Assessment:

- Baseline social conditions
- Impact identification and evaluation
- Mitigation and enhancement measures
- Monitoring and management plans

Benefit Sharing Mechanisms:

- Revenue sharing agreements
- Community development funds
- Local procurement programs
- Skills development initiatives

Stakeholder Engagement:

- Identification and mapping
- Consultation and participation
- Grievance mechanisms
- Ongoing relationship management

Corporate Governance

Board Oversight:

- Ethics committee establishment
- Regular policy review
- Performance monitoring
- Accountability mechanisms

Transparency and Reporting:

- Sustainability reporting standards
- Third-party verification
- Public disclosure requirements
- Stakeholder feedback mechanisms

Practice Questions - Module 8

- 1. **Ethical Analysis:** A mining company discovers that its cobalt supplier may be using child labor. Apply three different ethical frameworks (utilitarian, rights-based, virtue ethics) to analyze the company's options.
- 2. **Indigenous Rights:** Develop a framework for implementing Free, Prior, and Informed Consent (FPIC) for a proposed mining project on traditional indigenous lands.
- 3. **Case Study:** Research the conflict minerals issue in the Democratic Republic of Congo. Analyze the ethical challenges and propose solutions for companies sourcing minerals from this region.
- 4. **Stakeholder Engagement:** Design a comprehensive stakeholder engagement plan for a new mining project, including identification, consultation methods, and ongoing relationship management.
- 5. **Policy Development:** Draft a corporate policy on ethical sourcing for a multinational mining company. Include key principles, implementation procedures, and monitoring mechanisms.

Module 9: Legal & Regulatory Frameworks

Key Learning Objectives

- Understand mining law fundamentals
- Learn environmental regulations and compliance
- Master permitting processes and requirements
- Understand international legal frameworks

Mining Law Fundamentals

Mineral Rights Systems:

1. Surface Rights vs Mineral Rights:

- Fee simple ownership
- Severed mineral rights
- Government ownership models

2. Claim Systems:

- Location System: First-come, first-served basis
- Concession System: Government grants exploration/mining rights
- License System: Competitive bidding process

Key Legal Concepts:

- Discovery: Finding valuable minerals in commercial quantities
- Assessment Work: Minimum work requirements to maintain claims
- Patenting: Converting claims to fee simple ownership
- Royalties: Payments to mineral rights owners

Environmental Regulations

Major Environmental Laws:

- National Environmental Policy Act (NEPA): Environmental impact assessment
- Clean Water Act: Water discharge permits and standards
- Clean Air Act: Air emission permits and controls
- Resource Conservation and Recovery Act (RCRA): Hazardous waste management

Permitting Requirements:

1. Environmental Impact Assessment (EIA)

- 2. Air Quality Permits
- 3. Water Discharge Permits
- 4. Waste Management Permits
- 5. Cultural Resource Clearances

Compliance Monitoring:

- Regular reporting requirements
- Third-party auditing
- Government inspections
- Penalty structures for violations

International Frameworks

Investment Treaties:

- Bilateral Investment Treaties (BITs)
- Multilateral Investment Guarantee Agency (MIGA)
- International Centre for Settlement of Investment Disputes (ICSID)

International Standards:

- World Bank Group Environmental and Social Standards
- Equator Principles
- OECD Guidelines for Multinational Enterprises
- UN Guiding Principles on Business and Human Rights

Regional Agreements:

- African Mining Vision
- ASEAN Minerals Cooperation Action Plan
- Andean Community mining regulations

Contract Law

Mining Agreements:

- Concession Agreements: Government grants mining rights
- Production Sharing Agreements: Revenue sharing mechanisms
- **Joint Venture Agreements:** Partnership structures

• **Service Agreements:** Contract mining arrangements

Key Contract Terms:

- Term and renewal provisions
- Work commitments and expenditure requirements
- Fiscal terms (taxes, royalties, profit sharing)
- Local content requirements
- Environmental and social obligations

Dispute Resolution

Mechanisms:

- Negotiation and mediation
- Arbitration (domestic and international)
- Litigation in domestic courts
- Investment treaty arbitration

Common Disputes:

- Permit delays or denials
- Tax and royalty disputes
- Environmental compliance issues
- Community relations conflicts
- Contract interpretation disagreements

Practice Questions - Module 9

- 1. **Legal Framework Analysis:** Compare and contrast the mining law systems of three different countries. Include mineral rights ownership, permitting processes, and fiscal terms.
- 2. **Permitting Flowchart:** Create a detailed flowchart showing the typical permitting process for a new mine, including all required approvals and estimated timeframes.
- 3. **Compliance Scenario:** A mining operation receives a violation notice for exceeding permitted water discharge limits. Outline the immediate and long-term legal responses required.
- 4. **Contract Analysis:** Review a sample mining concession agreement and identify key terms related to environmental obligations, local content requirements, and dispute resolution.

5. **International Standards:** Explain how the Equator Principles apply to mining project financing and describe the due diligence requirements for financial institutions.

Module 10: Safety & Risk Management

Key Learning Objectives

- Understand mining safety fundamentals and regulations
- Learn risk assessment and management methodologies
- Master emergency preparedness and response
- Understand safety culture development

Mining Safety Fundamentals

Major Hazards:

- **Chemical Hazards:** Cyanide exposure, acid burns, respiratory irritants
- Physical Hazards: Falls, struck-by objects, electrical hazards
- **Ergonomic Hazards:** Manual handling, repetitive motions
- Environmental Hazards: Heat stress, noise exposure, confined spaces

Hierarchy of Controls:

- 1. **Elimination:** Remove hazards completely
- 2. **Substitution:** Replace with less hazardous alternatives
- 3. **Engineering Controls:** Isolation, ventilation, guarding
- 4. **Administrative Controls:** Procedures, training, rotation
- 5. **Personal Protective Equipment (PPE):** Last line of defense

Regulatory Framework

Key Regulations:

- Mine Safety and Health Administration (MSHA): US mining safety
- Occupational Safety and Health Administration (OSHA): General workplace safety
- International Labour Organization (ILO): Global safety standards

Compliance Requirements:

Safety training programs

- Hazard communication
- Incident reporting and investigation
- Medical surveillance programs
- Emergency response planning

Risk Assessment Methodologies

Risk Assessment Process:

1. Hazard Identification: What can go wrong?

2. Consequence Analysis: What are the potential impacts?

3. **Probability Assessment:** How likely is it to occur?

4. Risk Evaluation: Is the risk acceptable?

5. **Risk Treatment:** How to manage the risk?

Assessment Tools:

- Job Safety Analysis (JSA): Task-specific risk assessment
- Hazard and Operability Study (HAZOP): Systematic deviation analysis
- Failure Mode and Effects Analysis (FMEA): Equipment failure analysis
- Bow-Tie Analysis: Combining fault trees and event trees

Risk Matrix:

- Qualitative risk ranking (High, Medium, Low)
- Semi-quantitative scoring systems
- Quantitative risk assessment (QRA)

Chemical Safety in Leaching

Cyanide Safety:

Acute Effects: Rapid onset, potentially fatal

Chronic Effects: Long-term exposure concerns

Detection: HCN monitoring systems

Antidotes: Oxygen therapy, sodium nitrite, sodium thiosulfate

Transportation: DOT regulations, emergency response

Acid Safety:

- Handling Procedures: PPE requirements, storage design
- **Spill Response:** Neutralization procedures, containment
- First Aid: Eye wash stations, emergency showers
- Training: Proper handling techniques, hazard recognition

Emergency Preparedness

Emergency Response Plan Components:

- Emergency organization and responsibilities
- Notification and communication procedures
- Evacuation plans and assembly points
- Medical emergency response
- Environmental incident response
- Business continuity planning

Training and Drills:

- Regular emergency drills
- Tabletop exercises
- Multi-agency coordination
- Community notification systems

Safety Culture Development

Culture Elements:

- Leadership Commitment: Visible safety leadership
- Employee Participation: Safety committees, suggestion programs
- **Communication:** Open reporting systems, safety meetings
- Continuous Improvement: Lessons learned, best practice sharing

Performance Metrics:

- Leading Indicators: Safety training hours, near-miss reports
- Lagging Indicators: Lost time injuries, fatality rates
- Benchmarking: Industry comparisons, target setting

Practice Questions - Module 10

- 1. **Risk Assessment:** Conduct a Job Safety Analysis for heap leaching solution application activities. Identify hazards, assess risks, and recommend controls.
- 2. **Emergency Response:** Develop an emergency response procedure for a cyanide spill at a heap leaching operation. Include immediate actions, notification requirements, and cleanup procedures.
- 3. **Safety Program:** Design a comprehensive safety training program for new employees at a leaching operation. Include topics, training methods, and competency assessment.
- 4. **Incident Investigation:** A worker was hospitalized after exposure to cyanide gas. Describe the incident investigation process and identify potential root causes and corrective actions.
- 5. **Performance Metrics:** Develop a set of leading and lagging safety performance indicators for a mining operation. Explain how these metrics would be used to improve safety performance.

Module 11: Sustainable & Responsible Mining

Key Learning Objectives

- Understand sustainability principles in mining
- Learn circular economy concepts and applications
- Master life cycle assessment methodologies
- Understand responsible mining certification schemes

Sustainability Fundamentals

Triple Bottom Line Approach:

- Economic: Long-term profitability and value creation
- Environmental: Ecosystem protection and resource conservation
- Social: Community well-being and stakeholder value

UN Sustainable Development Goals (SDGs):

- SDG 6: Clean Water and Sanitation
- SDG 7: Affordable and Clean Energy
- SDG 8: Decent Work and Economic Growth
- SDG 12: Responsible Consumption and Production
- SDG 15: Life on Land

Circular Economy in Mining

Principles:

- 1. Design Out Waste: Eliminate waste through design
- 2. Keep Products in Use: Maximize asset utilization
- 3. Regenerate Natural Systems: Restore and enhance ecosystems

Applications:

- Waste to Resource: Tailings reprocessing, waste rock utilization
- Water Recycling: Closed-loop water systems
- Energy Recovery: Heat recovery, renewable energy integration
- Material Recovery: Scrap metal recycling, equipment refurbishment

Life Cycle Assessment (LCA)

LCA Framework (ISO 14040):

- 1. Goal and Scope Definition: Purpose, functional unit, boundaries
- 2. Life Cycle Inventory (LCI): Data collection and calculation
- 3. Life Cycle Impact Assessment (LCIA): Environmental impact evaluation
- 4. Interpretation: Results analysis and conclusions

Impact Categories:

- Climate Change: Greenhouse gas emissions (CO₂ equivalent)
- Acidification: SO₂, NO_x emissions impact
- **Eutrophication:** Nutrient loading effects
- Human Toxicity: Health impact assessment
- **Ecotoxicity:** Environmental organism effects
- Resource Depletion: Mineral and energy resource consumption

LCA Applications in Mining:

- Product environmental footprint assessment
- Process optimization opportunities
- Technology comparison and selection
- Environmental product declarations
- Supply chain impact evaluation

Responsible Mining Certification

Major Certification Schemes:

1. Initiative for Responsible Mining Assurance (IRMA):

- Comprehensive mining standard
- Independent third-party verification
- Covers environmental, social, and governance aspects

2. Responsible Gold Mining Principles (RGMPs):

- World Gold Council initiative
- Focus on responsible gold production
- Alignment with international standards

3. Copper Mark:

- Responsible copper production
- ESG performance assessment
- Supply chain assurance

4. Responsible Minerals Initiative (RMI):

- Conflict-free mineral sourcing
- Supply chain transparency
- Due diligence frameworks

Climate Change and Mining

Carbon Footprint Reduction:

- Renewable energy adoption
- Energy efficiency improvements
- Electrification of mining equipment
- Carbon capture and storage technologies

Climate Adaptation:

- Water scarcity management
- Extreme weather preparedness
- Infrastructure resilience
- Operational flexibility

Net Zero Commitments:

- Science-based targets
- Scope 1, 2, and 3 emissions
- Carbon offset strategies
- Transition planning

Biodiversity and Ecosystem Services

No Net Loss/Net Positive Impact:

- Biodiversity offset calculations
- Habitat restoration programs
- Species conservation initiatives
- Ecosystem service valuation

Integration with Operations:

- Mine planning considerations
- Progressive rehabilitation
- Post-closure land use planning
- Long-term stewardship

Water Stewardship

Water Management Hierarchy:

1. Reduce: Minimize water consumption

2. Reuse: Internal water recycling

3. Recycle: Advanced treatment and reuse

4. **Responsible Disposal:** Safe discharge or disposal

Water Risk Assessment:

- Physical water scarcity
- Water quality degradation
- Regulatory and reputational risks
- Stakeholder concerns

Innovation and Technology

Emerging Technologies:

- Artificial intelligence and machine learning
- Internet of Things (IoT) sensors
- Drone and satellite monitoring
- Blockchain for supply chain transparency

R&D Priorities:

- Lower-impact extraction methods
- Renewable energy integration
- Advanced materials recovery
- Environmental remediation technologies

Practice Questions - Module 11

- 1. **Sustainability Assessment:** Develop a sustainability scorecard for a mining operation including economic, environmental, and social indicators. Define metrics and targets for each category.
- 2. **Circular Economy:** Identify five opportunities to implement circular economy principles in a copper heap leaching operation. Include technical feasibility and economic considerations.
- 3. **LCA Study:** Design the scope for a life cycle assessment of gold production from heap leaching. Define functional unit, system boundaries, and key impact categories.
- 4. **Certification Analysis:** Compare three responsible mining certification schemes (IRMA, RGMPs, Copper Mark). Analyze their requirements, assessment processes, and market acceptance.
- 5. **Climate Strategy:** Develop a roadmap for a mining company to achieve net-zero emissions by 2050. Include short-term (2030) and long-term (2050) targets with specific actions.

Final Examination Preparation

Comprehensive Review Questions

- 1. **Integrated Case Study:** You are the chief metallurgist for a new gold project with the following characteristics:
 - 50 million tonnes of ore at 1.8 g/t Au
 - Located in a water-scarce region
 - Near indigenous communities
 - Refractory ore with clay content

Design a complete processing strategy addressing technical, environmental, social, and economic considerations.

- 2. **Regulatory Compliance:** A heap leaching operation must comply with new environmental regulations reducing permitted copper discharge from 5 mg/L to 1 mg/L. Develop a comprehensive compliance strategy including technical solutions, timeline, and cost estimation.
- 3. **Risk Management:** Conduct a comprehensive risk assessment for a cyanide heap leaching operation. Include technical, environmental, social, and regulatory risks with proposed mitigation measures.
- 4. Sustainability Integration: Design a sustainability program for a mining operation that addresses all 17 UN Sustainable Development Goals. Prioritize the most relevant SDGs and define specific actions and targets.
- 5. **Innovation Project:** Propose an innovative technology or approach to address a current challenge in mineral leaching. Include technical concept, development plan, and potential impact assessment.

Key Resources and References

Essential Textbooks:

- "Hydrometallurgy: Fundamentals and Applications" by Michael L. Free
- "Gold Ore Processing: Project Development and Operations" edited by Mike D. Adams
- "SME Mining Engineering Handbook" Society for Mining, Metallurgy & Exploration

Professional Organizations:

- Society for Mining, Metallurgy & Exploration (SME)
- International Association of Hydrometallurgy (IAH)
- International Council on Mining and Metals (ICMM)

Online Resources:

- USEPA Mining Information: https://www.epa.gov/mining
- World Bank Mining Resources: https://www.worldbank.org/en/topic/mining
- ICMM Sustainable Development: https://www.icmm.com/

Video Learning Resources: Note: Specific video links would need to be verified for current availability

Recommended Supplementary Videos:

- Search for "Heap Leaching Process" on educational platforms
- "Cyanide Safety in Mining" safety training videos
- "Environmental Management in Mining" sustainability courses
- "GIS in Mining" geospatial analysis tutorials

"Mining Law and Regulations" - legal framework overviews

Certification Requirements Summary

Prerequisites:

- Bachelor's degree in engineering, geology, or related field
- Minimum 2 years relevant experience
- Completion of all 11 modules with passing grades (70% minimum)

Assessment Components:

- Module practice questions (20% each)
- Mid-term comprehensive examination (30%)
- Final examination (40%)
- Practical project submission (10%)

Continuing Education:

- 40 hours professional development every 2 years
- Annual ethics training requirement
- Participation in professional organizations encouraged

Professional Code of Ethics:

- 1. Hold paramount the safety, health, and welfare of the public
- 2. Perform services only in areas of competence
- 3. Act with integrity and honesty in professional relationships
- 4. Avoid conflicts of interest and disclose unavoidable conflicts
- 5. Respect confidentiality of client information
- 6. Continue professional development throughout career
- 7. Promote sustainable and responsible mining practices

Appendices

Appendix A: Unit Conversions and Constants

- Common unit conversions in mining and metallurgy
- · Physical constants and chemical properties

• Grade and recovery calculation formulas

Appendix B: Regulatory Contact Information

- Key regulatory agencies by country/region
- Professional licensing bodies
- Emergency response contacts

Appendix C: Chemical Safety Data

- Material Safety Data Sheets (MSDS) summaries
- First aid procedures
- Spill response protocols

Appendix D: Sample Forms and Checklists

- Risk assessment templates
- Environmental monitoring checklists
- Safety inspection forms
- Incident reporting forms

This study guide represents a comprehensive overview of mineral leaching principles and practices. Students should supplement this material with current industry publications, regulatory updates, and hands-on experience. The field of mineral processing continues to evolve, requiring lifelong learning and professional development.

Document Version: 1.0 **Last Updated:** August 2025

Developed for: Ekasi Courses - Certified Ekasi Mineral Leacher Program

Disclaimer: This study guide is for educational purposes only. Actual mining operations must comply with all applicable local, national, and international regulations. Professional judgment and site-specific considerations are essential for safe and responsible operations.